
2
MAPPINGS AND GRAVJ4AS ON TREES 1 ,

William C. Rounds

Case Western Reserve University

(1) A preliminar version of this work appeared in the Proceedings

of the ACM Symosium on the Theory of Computing Marina del Rey,

Lfornia, May 1959.

(2) Some of these results vere obtained in the author's doctoral

dissertation, supported by USeA Contract F 44 620-68-C-0030.

(ACCSIQN NUMBER)4 THRZU) CZZ Yi,

2 (PAGES) (CODE) ~ ~~~~&tch0,.

Ve10Q193-3oI933 U
0 (NASA CR OR TMX OR AD NUMBER) (CATEGORY)
U-k

https://ntrs.nasa.gov/search.jsp?R=19700024927 2018-07-24T14:28:59+00:00Z

INTRODUCTION

Recent developments in the theory of automata have pointed to

an extension of the domain of definition of automata from strings to

trees. Here we study certain sets, functions; and relations on trees

using natural generalizations of ordinary automata theory.

Why pursue such a generalization9 First; because enlarging the

domain of automata theory may strengthen and simplify the subject in

the same way that emphasizing strings rather than natural numbers

already has done. Second, because parts of mathematical linguistics

can be formalized easily in a tree-automaton setting. The theories of

transformational grammars and of syntax-directed compilation are two

examples. A two-dimensional automata theory seens better suited to

handle concepts arising in these areas than does the conventional

theory.

The algebraic properties of finite automata on trees have been

extensively studied; see Brainerd [5], Doner [8], Meze. and Wright [12],

Thatcher [15], Thatcher and Wright [17], and Arbib and Giveton [4].

The notion of recognizable set is central to these papers. A finite

checking scheme (automaton) is used on an input tree. The scheme

analyzes a tree from the bottom (leaves) up to the top (root), classify

ing the tree as acceptable or not. The recognizable set associated

with the automaton is The set of all acceptable trees.

Here we will define sets of trees produced by finite-state

generative schemes. In this respect, making autonata work from the

top down instead of the bottom up is convenient. Rabin [13] was the

2

first to use this idea; his purpose was to define recognizable sets of

infinite trees. We do not considec such trees here; ore emphasis is

on generation but the top-doim concept is important for all our

definitions.

We use Thatcher and Wright's algebraic formalism to give

succinct descriptions of linguistic constructions in the tree case.

Using these constructions) we investigate decision problems and

closure properties. Our results should clarify the nature of syntax

directed translations and transformational grammars. (The latter

prompted the definitions in Rounds [14].) Previous models of trans

formational grammars had the capability of producing all recursively

ennumerable sets as transformagional languages. The models given here,

however, have the property that languages produced are recursive.

We begin in Section I with a discussion of trees. Ile consider

finite, labeled, ordered, rooted trees such that no label occurs on

two nodes which have different numbers of branches. Such a tree ap

pears in Figure 1.

A

/\

/1 /\

Figure 1

The top node of this tree is labeled A, and the bottom nodes are a, b,

e. f. x, and y.

3

We define a dendrolanguage to be a set of trees of this form.
I

We then discuss recognizable dendrolanguages, relating them to deriva

tion trees of a context-free grammar. These results also appear in

Thatcher [15]; we include them because of their linguistic importance.

In particular, we want to define functions on context-free derivation

trees.

We then introduce the simplest of our models, the deterministic

finite-state transformation. In analogy with the generalized sequen

tial machine mapping for strings, we define a function of trees which

produces an output tree from a given input tree using finite-state

rules, and which works first on the top node of the input tree; then

on the second level, and so forth until the bottom nodes have been

processed.

Thatcher [16] and Aho and Ullman [3] have recently studied

similar models; the former looks at algebraic properties, and the

latter at linguistic properties of these mappings. Our definition is

slightly more general in that we allow functions to be partial. We

obtain results about the domain and range of such functions; for

example, the domain is a recognizable set.

The yield of a tree is defined to be the string of symbols

obtained by concatenating all the labels found at the bottom nodes

together in left-to-right order. (The yield of the tree in Figure 1

is the string abefxy.) The yield of a dendrolanguage is the set of

strings obtained by taking the yield of each tree in the dendrolanguage.

For each tree function we have a corresponding relation obtained by

taking yields of pairs of trees in the function. By considering the

ranges of such relations, we obtain sets which extend the context-free

4

languages. These sets are called target languages.

In Section II we propose two main variations on the model of

Section I. The first is a nondeterministic finite-state transforma

tion, obtained from the determinstic version by allowing more than

one way to rewrite nodes in the input tree. We still insist, however,

that a node be transformed at each stage. (In ordinary transducer

language, this would mean that we cannot read the empty input symbol.)

We extend the analysis of Section I to the new scheme. The second

variation, in addition to being a nondeterministic scheme; allows a

transformation to modify the input tree at any stage by building a neiw

piece at the top. Hoever, we still try to achieve top-to-bottom

processing, and a generation is finished only when all bottom nodes

have been transformed. We see that in this case we may produce an

infinite dendrolanguage from a finate input set, and we study only

this situation. This model is a creative dendrogrammar. The yields

of creative dendrolanguages are the indexed languages of Aho [1]. The

importance of indexed languages for transformational linguists remains

to be investigated, but these languages arise at an early stage in the

study of transformational grammars.

5

SECTION I

DETERMINISTIC TRANSFORMATIONS

1. 	 Trees.

If we think of an automaton carrying out a recursive process on

its input,' it is natural to think of a recursive description of the

input itself. This has been done for strings and natural numbers, in

fact, a system of axioms similar to Peano's for the positive integers

can be used to define all strings over a given alphabet. An inductive

description of trees can be given as well: this description coincides

with the ordinary description of terms in a formal system. Of course,

we must show that formal terms can be identified with trees in a one

to-one manner. From the definition it should be clear that such a

correspondence exists.

The definition we use, found in Thatcher and Wright [171, is a

common one from universal algebra and logic. We need the idea of

ranked alphabet; intuitively, the set of labels which can occur in a

tree. We insist that a node with k descendants be labeled by a sym

bol of rank k. Thus:

Definition. A ranked alphabet is a pair (Zr) where Z is

finite, and r: Z L4f.We set

sn = r-l(n).

Now we 	 can define E-terms (trees).

6

Definition. Let (S,r) be a ranked alphabet. The set

(the constant S-terms) is the smallest set of strings such that

a) Y05

b) if t0,..,tn 7,, and aEn, then

0(toi) E' n

We axe formally defining certain vell-formed strings of symbols over a

large alphabet; including parentheses and commas, but this set, rather

than the set of all strings, will be the universe of discourse. It

will also help to forget-that we are talking formally about certain

strings, and to picture them instead as geometrical objects.

=
Example. Let S = (0,layE, l fsincos,-), S72 +,.]"
0

A typical element of J is

+(sin(a),.(cos(y),a)),

in ordinary notation the term sin(a) + a • cos(y). The tree picture

of this term appears in Figure 2.

S4

a cos o,
I

Fagure 2

The definition of term garantees unique readabmiity for any

term. Linguistically this means that the definition is really an

7

unambiguous context-free grammar for terms. Therefore, it is not

surprising that we can associate a tree picture with a term in a

unique way.

2o A preliminary example.

To illustrate the model we plan to define in this section we

will describe a function on -0, where Z is the alphabet in the

previous example. This function will be the operation of finding a

formal term representing the derivative of a given term over Z,

taken with respect to y. The rules which we apply should be the

familiar rules for differentiation, and we wish to apply them in a

top-doim manner to a given tree. Let us find the derivative of the

tree in Figure 2 as a special case. This tree represents the sum of

two terms. If we began at the top, the first rule we apply is

Dy(f+g) = Dyf + Dyg. Let us invent a state d which tells us to

take the derivative. Then the first rewriting rule--linearity of

differentiation--becomes

X0-

Figure 3

This rule says: If the process is in state d. and the node to be

rewritten is +, which may be followed by the subtrees x0 and x.,

then put out the node -1 and apply d to the nodes at the top of the

subtrees x0 and x . The result of applying such a rule to Figure 2 is

--
8

/
I /

C~Ct

Figure i

At this poinb, two rules become applicable the chain rule on the

left, and the product rule on the right. We can symbolize these:

d,VAAX, l No c ,
-

Figure 5

Here, i is a new state, the identity or do-nothing state. We then

derive

-

1 -t

Figure 6

The reader can easily make up productions which will finish the

derivation.

9

Notice that in applying the product rule to derive the tree in

Figure 6, we had to make two copies of the input subtree cos(y). The

power to replicate subtrees of the input tree is a primitive operation

associated with transformations. Notice also how the states sweep

through the input tree from top to bottom. There is never a choice

but to rewrite a given node in a unique way depending on the state.

This is the deterministic feature of the model.

3. Recognizable sets.

Transformational theory, as developed by Chomsky [7] and many

others, deals with the notion of phrase-structure grammar; and with

certain mappings defined on derivation trees associated with the

grammar. Derivation trees do not make much sense for context

sensitive grammars, because they depend on the order of carrying out

a derivation. We will therefore assume that mappings are to be

defined on context-free derivation trees. Intuitively speaking, we

may describe the domain of a transformation as a set of tree struc

tures for simple (kernel) sentences (e.g. "I see the cat") and a

transformation as an operation on the tree for this sentence which

changes it into a structure for a closely related sentence (e.g. "The

cat was seen by me"). The tr~es representing simple sentences are

called deep structures, and transformed trees surface structures.

Similarly, the theory of syntax-directed translation deals

with changing statements in a programming language into some other

language by performing operations on the derivation trees of strings

in the source language. One of the original schemes of this type was

10

developed by Irons [101; formalizations have been given by Aho and

Ullman [2], [31, and Lewis and Stearns [11].

We must, therefore, formalize the idea of a set of derivation

trees. Here we follow Thatcher [16].

Definition. An (C-free) context-free (CF) grammar over a

finite alphabet F is a 1 -taple G = (Vs 0 jSan) where ',0 CV,

V is finite, S E V-Z O , and H is a finite set of pairs (Aw)

called productions, where A E V-S0 and w E y* - (e). 	 (c is the

identity element of the free monoid f* over V.)

A CF grammar is ranked if whenever (Aw) and (Ax) are in 11,

then the lengths of w and x are equal.

We may form a ranked alphabet from a given ranked CFG by letting

the set Z be the 0-ary symbols and letting

En = [A E V-Soj(Aaw) E J1 and length (w) = n).

Using this ranked alphabet we can define the set of derivation trees

DG associated with any o E r; by induction:

G
(±) if X E Z0, D [W;

(ii) 	whenever (ow)E 1, a E Zn for n >l

EE(tDG

w .and t ED a j.tn E DG,. then

DG
The set of derivation trees of G is the set DG. Notice that

S.

DG
under the correspondence of trees with terms; a term in is a tree

with top node a, and such that if T is any node label, 	the labels

a. on the immediate successors satisfy the require.ent that
3.

T -4 O... m is a production of G. Notice also that any (c-free)

context-free language can be obtained from a ranked CF grammar, by

relabeling non-terminal symbols. (We could avoid using ranked

grammars if we discussed ranked alphabets 7 iwhere r was a relation

instead of a function.) No languages will contain the empty word in

our discussion.

Definition. Let Z be a ranked alphabet. A E-dendrolanguage

DG
is any subset of J. The sets are thus simple E-dendrolanguages,

which could be called derivation dendrolanguages.

We need a function to read off the sequence of bottom symbols

on a tree. This function will be called the yield of a tree

y(X) = X for K ES O;

Y(Cr(toPtl2...;tn_l)) =Y(to) •Y(tl)..-Y(tn-1)

where is concatenation in ;. The yield of a dendrolanguage

is

Y[R] = (Y(t)jt E R.

A context-free language is thus the yield of a derivation dendrolanguage.

Now we can define the important class of recognizable dendro

languages: These sets, a generalization of regular sets of strings,

are closely related to the derivation dendrolanguages. First, we

define tree automata [5 1, which can be viewed as finite checking

schemes for a tree. Each node a in a tree of rank n induces a

12

Anfinite 	function a . 4 A, where A is intuitively the set of

states 	of th automaton.

Definition. let A be a set. By an assignment of

S-operations on A we mean a function ,Z-4 (A(A) In> 0) such

that if a E S then c(a) E A(A) m() will be written a and

is simply an n-ary operation on A. If ?. E Fop a is a fixed ele

ment of A. (These aa will be the next-state functions.)

Definition. A Z-algebra is a pair a = (Ac) where A is

nonempty and a is an assignment of E-operations on A. If A is

finite a is said to be finite.

Definition. A finite Z-automaton is a triple (A3a;,A,) where

(Ala) is a finite S-algebra and AF S A. AF is the set of designated

final states.

Speaking automaton-theoretically, we can now extend the next

state function to all of 5S.

Definition. The response function 11Ila of a S-algebra is

defined inductively by

(i) IIXI I= a> for X ESZ;

(ii) 	11a(to---..t nl)ll = Iol-.InJ

As is easy to verify, the evaluation of the response function

on a tree corresponds to checking the tree from the bottom up.

13

We are in a position to define recognizable sets:

Definition. P C is recognizable if there is a S-automaton

a = (A~c ,A) such that

Sft flItIla E AF).

We do not develop any properties of recognizable sets here;

many standard properties still hold in the tree case, in particular,

decision problems are solvable. We state two results of Thatcher [151,

which relate recognizable sets to derivation dendrolanguages, these

are the reasons we review recognizable sets here.

Theorem. Every derivation dendrolanguage is recognizable.

Theorem. Every recognizable dendrolanguage can be obtained

from a derivation dendrolanguage by a function (projection) which re

names nodes in a tree.

As corollaries, we find that the yield of a recognizable set is

a CF language, and that every CF language can be obtained this way.

4. Deterministic finite-state transformations.

We want to formalize mappings like the syntactic derivative of

Section 2. As indicated in the introductionj this should be done

linguistically, not algebraically, although the two approaches are

equivalent. We use the idea of a tree production. This will also

permit succinct definitions of more complicated models.

To formalize a rule like

+ +

we need only imitate the ordinary notation for trees as terms. We get

(d,+(xox)) -,+((d~ 0Xo)(d~x9)).

The linearization of the product rule would be

(d,.(xo0 xj) -4 +(((d,-O(ijxo)),.((iXo),(dlx!)))-

Unfortunately, we have not written doin well-formed terms; because

pairs like (d;xo) occur as labels. The solution is to enlarge the

set of terms so that other objects besides elements of Z0 occur at

the bottom nodes of a tree. These other elements will be called indices

and will come from a specified set disjoint from Zo0

Definition. Let I be a set disjoint from Z0. The set of

S-terms indexed by I, written Y%(I), is the smallest set of

strings such that

(i) I U E0 Z (x)

(ii) a E 'n and t0,... ;tn_l E Z(I) imply

,
a(t0...t-1) E Z().

Particular index sets I follov.

15

Definition. Let X be a fixed countable set (xo,Xl....

The set .7(X) is the set of all terms in the variables X.

Denote by the subset (xo ...;xnl of X. If Q is a
Xn 0

finite set (set of states), then we can define productions"

Definition. A finite-state (index-erasing) production over Q

and F is a pair ((qc(xo...Xnl))t') written (qcr(xo,.. .;xn-)) -4 t

such that t' E .(Q X X).

The reason for the name index-erasing is that application of a

production to a given node takes place only once. Every time a node

is rewritten, a new index node is designated for the next application

of a production. This corresponds to the action of a finite state

machine reading and erasing its input.

The next objective is to define the entities to which produc

tions apply. Looking at the example of #2, we see that they

should be trees with states occurring in the branches. The subtree

below a state represents undeveloped input, and the state marks an

active location. We can represent such a configuration as an element

of 0.Y(Q X Y.), where a pair (qt) E Q X 10o is an index which
0

represents an input suburee t with the state q attached to the

top.

All that remains is to describe how a production applies to an

intermediate configuration. Let us do it first informally. Given a

configuration v choose some (qt)E Q X occurring as an index

in v. Let t = c(so,...,sn1). Suppose there is a production

16

(q,(Xo,... Xn1)) * u in the given set of productions (for a given

mapping). Here, u EC7(Q X Xn). Let t' be the result of substitut

ing sO for x0,...)S n_ for xnl whenever these variables occur

as indices in u. In other words, if (r;x) occurs as an index in

u, replace it by the element (rs.) of Q. 0. Replace now the

entire index (q~t) by the new tree t'. The result is the tree v'

obtained by applying the given production.

(Note: At each step we select a single occurrence of an

index (q(s 0 ... ,s n)) in v to which we apply the production

(q(xO... xn-1)) 4 u.)

We can now give,a full formal description of the class of map

pings we have an mind.

Definition. A (deterministic) finite-state transformation is a

4-uple

T= (zQqon),

where F is a ranked alphabet, Q is a finite set of states,

qo E Q is the initial state, and 11 is a finite set of input-erasing

productions over Q and F such that for each pair (qga) E Q x E,

there is at most-one production (qc)-4 u in 11. A transformation

is total if there is exactly one production for each pair in Q X E.

Remark. We are defining transformations such that the domain

and range of the mappings are trees over the same alphabet. This is

17

a minor point, and ire shall sometimes modify input and output alphabets

when it is convenient°

Definition. (Direct generation.)

Given t E 7(Q x- the set of trees t' such that t

directly generates t (via T) is defined inductively on t.

tt
(i) If t E Z0 then t')=)

(ii) if t EQ X7 then t=(qE) where tE o

There is a subdefinition depending on the form of t.

(a) If t XE Z., then if there is a production (q,x) 4 t'

in E, then

(t'(qaA) t'] = t'°

t
If not, then ft'I(qyB) = t'

(b) If E = c(so.'Sn-l then if there is a production

(q(xo...x;Xnl)) * u in U, then ft'j(qAZ) th) = ft'It' can be

obtained from u by substituting so for x0 in each pair (Tmxo) index

ing u) substituting s1 for X1, and so forth (up to Sn_1 for xn-1)]O If

there is no such production then ft'f(qE) t' =.

(i3i) If ar(to...tn-l) then t't 0 t = if for exactly one

ij t' = a(to,0 4 0 ,t.'.tn) and t t

We can decide effectively when two trees t and t' are such

that t = t'.

18

The previous conditions define a relation = on 7j(Q X g 0

Let 	=> be the reflexive, transitive closure of °

Definition, Let T = (Qqo,). The function computed by T

is the 	set of pairs T {(ss) E 0x g01(k s) =:,stII

One easily shows that T is a function (using induction on s).

If T is total, then it computes a total function.

Examples. (i) We leave it to the reader to vrite out a formal

description of the dilferentiation operator (Section 2).

(ii) 	DeMorgan's law for Boolean polynomials. This function

takes a Boolean polynomial over a finite set W of variables and

transforms it into an equivalent one so that the variables are the

only subexpressions occurring with complement signs on them.

Let T (s,Q~qo,n) where

() 	 Q cj)

(ii) 	q 0 =j

(iii) 	E0 W, the given set of variables

=,1-

F2 	 fVA3

(iv) 	11 has eight productions as follows:

(jA(xoxj) -4A((,Xo. (jx))
1

(.JV(XoX)) - v((j,%),(JXj))

(,-(xo)) 4 (c,xo)

(j,) -)w for any w EW.

19

j is a state which looks for a complemented subexpression. When such

an ekpression is found, the complement sign is erased and the process

goes to a new state which will carry out DeMorgan's law:

(cA(xOx 1)) -4 V((cx 6),(cx,))

(c,V(X 0 x)) 4 A((cxO)Xc~xl))

(Cr-i(x 0)) - (j,x0)

(Cow) 4 -n(w) for w E W.

In the previous two examples, the transformations were total

Not every transformation has this property, of course. We may have an

alphabet Z and a proper subalphabet A, and may wish to define a

O
mapping on S3A only, with values in 70.O It is convenient to leave

A F,

productions which read symbols in Z\A out of the definition0 If a

tree ith some node in s\A occurs, we wash our transformation to be

undefined. (This behavior is called blocking in transformational

theory.) Our first result about transformations is

Theorem 1. The domain of a partial deterministic transformation

is a recognizable set (effectively obtainable).

Proof: Let T = (ZqoH) be the given transformation. We

construct an automaton a = (A mA):

(i) A = P(Q) (all subsets of Q)

(ii) m, = (q E QjSJ(qX) u] EI)

Ga(qo OO.qn-)= q E Qj[(q,a) such that whenever) ul E II,

.(q'xi) indexes u, then q' C Qi]

Since U is finite, one may effectively construct a and G.

0

for each X E Zf) a E 5,,. We claim that for each t E z ,; and each

20

qE Q

The proof is by induction on t. Suppose first that t = X E S0. If

(q~t) * s E s7, it must be by a one-step process, so there is a

production (q,%) -* s in H. Thus, q E 11%la. (The converse is evi

dent.) Suppose now that the result holds for t0 ...,tn1 l and let

t = (t 0 ... ,tn). If (q,t) =* s where s E f, then there is a

production (qa)4 u in H and a tree t' such that t' is

obtained from u by substituting t for x whenever (rx.)
1 123

indexes u. Now (rt) s where sI E 0 . By hypothesis,

r E lit.II. Since this is true whenever (rx,) indexes u; we con

clude by definition of a that q E 11th. Conversely, let q E jth.

Then, there is some production (q,cr) 4+ u in 11 such that whenever

(rxI) is an index of u, we have r E IItill. The hypothesis applies,

telling us that there is si E 170 such that (rtI) = s Since the
 .

production (q,c) 4 u applies to t, yielding t, and the indices

(r,ti) occurring on t' all generate terminal trees, so does (qt).

The theorem follows when we take AF = (q.). Q.E.D.

We used implicitly the fact that for any tree t E (N X S.

t generates some terminal tree (element of 70) if and only if every

(q~tI) occurring as an index on t generates a terminal tree. This

fact is easy to prove by induction.

21

Now, we wish to investigate composition of transformations.

Theorem 2. Total deterministic transformations are effectively

closed under composition.

Proof. Define T(qt) to be the unique tree s such that

(qt) t S.

We want to make the actions of S and T take place

simultaneously. As soon as
T produces an output, from application

of a production, S will act on that output. This suggests defining

right-hand sides of productions for the composite U to be the result

of S acting on the right-hand sides of productions of T. This

result will of course depend as well on which state S starts in.
The production of U will therefore be of the form ((qS T),a) V,-

where (q ,C) - u is in 11 , and v is the result of S acting on

Su starting in state q . Of course, u E E (Q X Xn)) so strictly

speaking, S is not defined on u. However, it is easy to give an

inductive definition of the action S(qSu) of S on u starting in
S
 -S
state q . For constants, S(q ,X) = S(q ,%). For variable pairs,

(qS,(c ,x)) = ((q S,)x). For u of the form a(to, ... ;tn-l),

S(q ,0u) is the result of replacing every index (r Sx) (in the tree

t' such that Nq ,a) i tV) by E(rSt,). Obviously, if ui E JPI

S(qSu) = S(c ,it). Otherwise 9(q E -3]j x Q) X n whenever,iu) E

the variables of u are in X

n
S S S

Nov we can begin the proof. Let S (Q qofl),

T T T
T (EQ ;qO;l). T is to be carried out first. Define

22

HU U U U T U /3,T
U = (FQU ,1) by letting Q = Q X QT , = qoq 0), and by

putting the productions ((qS, To) S ,u) (for every S Q)

1Uinto whenever (q ,) - u is in IIT . We want to prove by induc

tion on t E $' that

U((q1,Q),t) = S(q~,(qC T,i4).

For t = X, this is clear, because T(qT) E? , SO S(q ,T(qT))

-S(q ST(gq ,x)). Also, (q ,PqT);,) ~ qF(,Tq ,X)) is a production

.
in EU The result follows.

Nov suppose t = a(t 0"...tn and assume the result for1)

each qSEq and T EQ when applied to t 't

U((q ,qT)t) is calculated by first applying ((qS,)q) S(q ,u)

to t, where (NT),) -4 u is the applicable production of ITT . Let

v be the first stage in calculating U((qSqT)t). Also, let t' be

the result of applying (qTa) -4 u to t. A typical index on t'

looks like (r t where (rTx.) indexes u. Let us write

t (rT,)] t by which we mean that (rT;t) occurs at a fixed

location in u.

We can similarly wirite

v = (qT u)[((rS-,T)t]

but we mean to specify here that (rT;t) is the same index occurring

in t' that we picked out before. Thus the index ((crSrT)t)

dpends on our previous choice of index. Now T(Jt) = U[T(rT t)].

23

(The index (rTIti) has been transformed, assume all others have also

been transformed.) Hence,

S~~Tq ~)- qUS ITL\Tj11

and by inductive hypothesis this is equal to

5(QlT:)[u((rt rD)tj)] E 4.O

But this last quantity is just U((qS,),t). Q.E.D.

Theorem 2 is a little special, and iTe naturally ask whether it

can be extended to more general transformations. The answer is nega

tive for partial deterministic ones as iTell as for nondeterministic

ones. We present a counterexample of W. Ogden (personal comm.) for

the partial deterministic case. Thatcher [16] has an example for the

nondetermnistic case. These are counterexamples to the theorems in Rounds [1i]

Example. Let F0 = (Xj), Z2 = (a).

T(F QT qoT:I T), where

TT

QT = (qo,ql};

T

iiT consists of

(q1,a(x0,x1)
-

24

(q0,X)-* X; (q2 ,X) 4 X, (q 1 ,w) .4 0w.

T defines a partial function on which is the identity on

the set of all trees whose extreme right-hand bottom node is not

labeled with an w. The function is undefined for trees not in this

set.

S S S

The system S is (,Q 8 qoS), where

S= fro,rQ; ro

the following productions make up ifS

(roa(xo,xl)) 4 (rloXo);

(roX) - X; (ro,w) -, W;

(rl, a(xo,xl)) -4a((rl,Xo), (r,,l)),

(r14%) -' %; (r1,w) - w.

S(a(t0 t) = to; s(x) = %; s(w) = w.

We notice that S(T(a(totl))) = to if tI is not labeled

with an w on the extreme right-hand leaf; otherwise is undefined.
0

We claim SoT as not partial deterministic.

Let U = SoT. If U were p.d.j then there would be a produc

tion (pOa(xoxl)) 4 t, (p0 is the initial state)0 t must have a

variable index, but no more than one, because U(a(w,)) = w. t

cannot have a constant node for the same reason. Thus t must be

of the form (P.Xo) or (pxl) where p is a state. If the first

25

case occurs, then since U(a(w,x)) = w, (pg) - w must be a produc

tion. But then, the derivation

is possible; but T(a(ww)) is undefined. In the other case, a simi

lar contradiction is'obtained.

5. Transformational systems.

The composite mapping U oust described fails to be a partial

transformation because it can act on a tree for which the first trans

formation is undefined. If we were not allowed to give such trees as

arguments, then we could, in fact, write a partial transformation

which would agree with U on all trees in the domain of T. But this

domain is a recognizable set. This fact leads us to define a

deterministic transformational system as a pair (RT), where R is

a recognizable dendrolanguage and T is a deterministic transforma

tion. This definition makes sense from the point of view of trans

formational grammars, because transformations a2e defined on the

derivation dendrolanguages associated with CF grammars. Such dendro

languages are recognizable sets. Our idea is to restrict the trans

formation T to the dendrolanguage R.

We again wish to study closure properties of restricted trans

formations. These fall into two categories: one, the transformations

themselves as functions, and two, relations obtained by taking yields.

In the remainder of this chapter we will discuss just a few of these

properties.

26

For the first category, we have just seen that closure under

composition fails unless transformations are total. Another fact is

that transformations do not in general preserve recognizable sets.

(Proof: let E0 = No), E2 = (a). Define T so that

T(a(to,t1)) = a(to,to). Then y(T[JY]) = (xxx E ZO). If T[,Y9

were recognizable, then (xxlx E Z* would be a CFL. Contradiction.)O

We do, however, have a izeak result.

Definition. Let (RT) be a transformational system. The

(deterministic) surface dendrolanguage produced by (6%T) is the set

T[9].

Theorem 3. Deterministic transformations preserve deterministic

surface dendrolanguages.

Proof: This is essentially a modification of the proof of

Theorem 2. With S, TI U given as in that proof, we observe that if

T is defined on t starting in state q , then U((qSqT)t) =

- S(qS,T(q ,t)).

By the equality here we mean that one side is defined if and

only if the other side is. (S may not be total.)

Now if (RIT) is the system producing T[,] as a surface

=dendrolanguage; let R','z2 n domain (T). ,' is recognizable because

domain (T) is recognizable, and because we have closure under inter

section for recognizable sets. Now T(qTt) is defined for every

t E 9'. Therefore,

u[= S[T[]. Q.E.D.

27

Yields of trees occurring in a restricted transformation will

also prove to be fruitful.

Definition. Let (2,T) be a transformational system. The

(deterministic) translation defined by (9,T) is the set

f(y(s),y(t))f(st) ET n (tx 10)).

If T is total, then translations coincide with the GSDT's of Aho and

Ullman [3].'

It follows from work of Aho and Ullman that translations (for

total transformations) are not closed under relational composition.

We suspect this is true also for partial and even nondeterministac

ones, though we do not study the question here. We may, however,

still consider domains and ranges of translations. From Theorem 1 it

follows that the domain of a translation is context-free. The range,

by our previous example, need not be context-free.

Definition. A (deterministic) target language is the range of

a (deterministic) translation. Since the range of a relation is empty

if and only if the domain is, and since we may effectively obtain a CFG

whose associated language is the given domain, it follows immediately

that the class of deterministic target languages has a solvable

emptiness problem. We know very little else about this class; most of

the interesting results are obtained for the nondeterministic version.

We therefore turn to these extended models.

28

SECTION II

NONDETERNNISTIC MODELS

In this section we introduce choice as a capability of trans

formations. We shall consider both grammars and nondeterministic

mappings of trees but will use productions to define each model.

Roughly speaking, a grammar is a nondeterministic mapping applied to a

finite set of inputs (the starting configurations), whose range is, in

general, infinite. In contrastj a nondeterministic transformation

yields, for each input, a finite set of outputs. Such a mapping must

therefore have infinite domain to produce an infinite range.

Transformational grammars and generative grammars in general

are nondetermnistic. Transformations, however, seem to have the

property that given a deep structure for a sentence only finitely

many surface structures result from a single application. (We assume

here that transformations are not iterated.) It is clear also that

transformations should not be total functions. For example, only

trees which satisfy a structural description associated with a trans

formation can be changed by that transformation. If a tree does not

satisfy such a description, we may wish the transformation to be un

defined. Another bit of evidence for non-functionality is the notion

of optional rule. Certain transformations have choices built into

them; one may decide at will whether or not to rearrange word order in

some sentences, for example. The precise idea of nondeterminism is

intended to approximate this feature of transformational grammars.

We shall first investigate some mathematical properties of

nondeterministic transformations, indicating the merits and drawbacks

29

of these models and certain generalizations. Then-----

grammars on trees, concentrating on an analogue of context-free

grammars in the tree case. The study of tree grammars at this point

is not nearly complete.

1. 	Nondeterministic finite-state transformations.

The definition of nondeterminastic transformation is immediate:

simply allow any finite number of productions with a given left-hand

side. Allow also a set of starting states instead of a single initial

state. Formally:

Definition. A nondeterminastic FS transformation is a 4-tuple

T (S QQoll) where E is a ranked alphabet, Q is a finite set of

states, Q0 £ Q is the set of initial states, and T1 is a finite

set of index-erasing productions over Q and Z.

The definition of direct generation is the same as for deter

ministic transformations.

Definition. The relation computed by a nondeterinistic trans

formation T is the set

(Xs? E)((%o,s){'_ ITOPS C =*s

A partial deterministic transformation is an honest special

case of a nondeterministic one. For some pairs (qc) The set of

productions with these pairs for left-hand side may be empty.

We have an immediate theorem for FS relations.

30

Theorem 1. The domain of a nondetermnnistic FS relation is

recognizable (effectively).

The construction of an automaton to recognize domain (T) is

exactly parallel to the construction given for Theorem 1-1, and may

be safely omitted here. We can now prove the converse result:

Theorem 2. Every recognizable set is the domain of a non

deterministic transformation.

'roof. Let F be recognized by C = (A,aA,). Let

=A,- =E, and let

(qa) -4 ((%,x0),...,(%_, xn_,))

be in UT exactly when a (q0 .. .qn_,) = q. We claim for all

qEQT, t EY

T 0

(as C ,O)((qt) =t s) iff jltjlc = q.

We prove one half of this assertion by induction on t. The statement

is obvious for t E S0" Assume in therefore for t 0 ,... tn_1 and all

q E Q. Suppose

(as)(q (to...tn-1)) 4, s.

Then

(qa(to .. tn.i)) c h(atl-tn-l)
)

,. ((qoto) ...
 * s

where "-(q.1'...'°-i
) is such that

31

S(%,l...,%n_i) -=q.

The hypothesis implies that ltolla = qo"... ltn-l11o = qn_l so that

The other half of the assertion is just as easy to prove, so we

omit it. Q.E.D.

An open question--can we construct a deterministic transforma

tion T recognizing Z?

2. Transformational systems and surface dendrolanguages.

In keeping with previous definitions, we define a nondeter

ministic transformational system as a pair (RT) where a is

recognizable and T is a NDFST. Since transformations are not closed

under composition (see [16] and below) we cannot immediately study

the effect of arbitrary transformations on recognizable sets. This is

something of a drawback, but can be remedied in the case of linear

transformations, as we shall see.

Definition. The surface dendrolanguage associated with (9,T)

is the range of the relation computed by T when restricted to 6.

This set will be denoted by T[6].

An obvious property of surface dendrolanguages is effective

closure under unions. To prove it, let T[R] and S[R'] be given;

let p Er have rank 2. The set

a = fp(t)jt E R U R')

32

is recognizable. Define a nondeterministic U by making the state

sets-of S and T disjoint, adding a new initial state Uon and

productions

T S

(u0,p(xo)) - (qO,xo) I (qgx).

Thus, U[9] = T[R] U S[9']; proving the result.

We are now going to establish a result on composition of non

deterministic transformations. In general, composition fails because

the second transformation applied has repeated variables in some

productions. [E.g. (q,a) -i a((qx 0),(q',x0)).] If the first trans

formation is nondeterministic, then its random effect on an input tree

may be duplicated in two places by the second transformation. Thus,

it may be impossible to construct a third transformation which uill

carry out this behavior all at once.

=Example. Let Z2 (a), zi = (Py'rl 1O= 4. T has stateZ.

set Q = q], and productions

(q,p(x)) -4p((qx)) I r((qx))

(q,X,) -4X.

(Let the input set be S_0 S has states fr,s), initial state

r, and productions

(r,p) -a a((s,x),(sx 0))

(r,) -M ((SX,(s,xo))

(sap) - P(s,x o)

33

, T(X. 0
(SX.) -4 %.

S has the undesirable effect of reproducing the random string

produced by T from pfn(,). To get rid of this duplication, we make

the hypothesis that the second transformation have no repeated vari

ables in its productions. Following category theorists, we therefore

have:

Definition. An NDFST L is linear if whenever (qc,) - u is

a production, and (qx.) and (s.,x) occur as indices on U, then

x xj.

Theorem 3. Linear transformations effectively preserve non

deterministic surface sets.

Discussion. The conjecture that LoT is a nondeterministic

transformation is apparently false, see the example of Ogden in

Section I. (T is also linear in this example.) We are forced,

therefore, to define first an analogue of totality for nondeterministic

transformations. We will replace the given sucface set with one

generated by a total transformation. Intuitively, totality means that

no stage in a derivation is ever blocked.

Definition. Let T be a NDFST, E Q and t E Z . T is

completely defined on t starting in state q if t satisfies the

inductive definition

(1) if t = N E FO, then there is a production (q,%) -)s

in

34

(ii) If t = a(t0,... tnl), then there is a production

(q,a) - u in T and for each such production whenever (rjxj)

is an index on uj then T is completely defined on tI starting

in state r.

We say that T is completely defined on t if the above con

dition holds for T on t starting in state q for each q E QV

and T is c.d. on 2 if T is c.d. on t for each t E a.

it is easy to prove by induction that if T is c.d. on t

Starting in -q, and (qt)=Jk t' where t' E .(Q X JO0), then if

10(rt) occurs as an index in V, then there is an s E J such

that (r~t. s.

Proof of Theorem 3. First we show that without loss of

generality, the firsb transformation T has a single initial state.

Let T be the same as T but with initial state (q). Now

q

T[R] = U T [9].

This implies

= U LET f].

Since surface- sets are closed under union (effectively) it suffices to

show that L[Tq(]] is a surface set. Thus we may assume T has one

initial state.

The result is proved in two steps.

35

Lemma 1. Given T and R we may find effectively T' and

' where T' has one initial state, such that T'[.'] = TER], 9'

is recognizable, and T' is completely defined on g'.

Lemma 2. If T is c.d. on R and L is linear, then

L[T[%]] is effectively a surface set.

Proof of Lemma 1. Let H be the set of productions for T.

it E is legal for t in t0 if t satisfies

(i) v is legal for E Z if it is (q,%) - s for some

q E Q.

(ii) ic is legal for 5(t01...,tnl) if it is (q,o) -)u,

where u is such that whenever (rxI) is an index on t', then

there is a legal production for t with r on its left-hand side.

The set of legal productions for a tree t is exactly the set

of productions which can be successfully applied to t yielding a

terminal tree. Notice that the definition of legality is really the

construction of a finite automaton a such that

JtIll = (7tE is legal for t.

(We omit this part of the proof.)

Now we construct the set R'. It will be defined over an

extended alphabet Ft. Let TI be the power set of the production

=
set 11. Let F' 11 X S . Now let P be the projection from J
n n

to induced by P(Kc) = r. P and 1 preserve recognizable

sets (Thatcher [16]). Now set

36

R{=t E40 I(Vt, < t)(t' = (K:)(to,...:tn-1)

implies K # and K = (irjIr is legal for t)}.

(Here, t' < t means that t' is a subtree of t.) Set

= ftC€ IP(t) E R n domain (T)).

To show a' recognizable, it is sufficient to show is recognizable.

To do this, moreover, it is sufficient to show it for g', which has the

same definition except that the condition K / 9 is omitted. (This

follows by intersecting g' with a suitable recognizable set.)

But the recognizability of ' follows from the general fact

that if a has state set A, Z' = A X Z, and

g= (t E 9,I(Vt' <t)(t' = (q,)(tO,...,tn I) implies q = IIP(t')lla)),

then g is recognizable. [We construct below an automaton for S.

Let B = A U (20) (2A. Let

q
i f M

tq

= {= otherwise

o q if all qi E A and
C

)(qo,."" n-M('"-,qn- = 1) =c

0 otherwise.

The inductive statement (which we do not prove) is

1111a, = q E A (Vt' < t)(t, = (r,1a)(8 0,."'en-)

implies r = IP(t)lla = Ilt'lla,)

37

The fact follows when we take BF = A.]

T? T TI TDefine T' as follows Q = Q ,q = qo, and

(q,(K,)) 4 u is a production in 11T' if and only if (qU) 4 u

is a production in K. We must show that T'[R'] = T[9] and that T

is completely defined on R'.

Let (q0 ,t) 4, s where s,t E J.0,)t E '. If we take P(v)

where v is a tree in 7,(Q x JT,) such that (qot) =, v both in

the index and the output tree, we obtain immediately a tree derivable

(via T) from (qo,P(t)). Thus s can be derived from (qOP(t)),

so T'[9'] T[R]. Conversely let (qo,t) =* s be a derivation of a

terminal tree s from t C 6. Every step of this derivation is the

application of a legal production for the subtree being transformed at

that point. Label each node of t with the set of productions legal

for the subtree headed by that node; we obtain a tree in g'. We can

then mimic the T-derivation with a T' derivation. Thus,

T'['] :D T[R].

Finally, we prove that T' is completely defined on g'. To

do this, let

q ft T
0 1(Ss E ,f((- t s.Dq(T) {t E 0

q E QT'
We will show by induction that for each t E '0 and

if t E R P-[Dq (T)], then T' is c.d. on t starting in state

q.

38

Suppose that t = (K%)E Z', and let q be such that

0T
t E ln P [0(T]. Then there is a production t E 1T: (q,%) 4 s

T tand thus (q,(KK)) - s C f1'. Thus, is completely defined on t

starting in, q.

Now let t = (K,)(t0 ...,tnl) and q be such that

t P [Dq (T)]. First, we must find a T El': (q,(Kc)) 4 u

Now Pt E DT) so we may find a legal it E H': (q,) 4 u . Thus,

it': (q)(Kcr)) 4 u can be found an fl'. Next, we must show that if

(rxi) indexes u ; then T' is c.d. on ti starting in r. By

inductive hypotheses, we have therefore to show E P-[Dr(T)] nRit I .

But every subtree of a tree in I is in tl; so t E 2. No

P(t) =, P(u) and 7c is legal for P(t). Thus there is a terminal

tree s. such that (r,P(t)) =* s because (r,P(t)) indexes

I i T

P(t'). Thus, t. E PE [Dr I)]. The inductive statement follows, and

since 9' c ' nlP [Dqo(T)], Lemma 1 is proved.

Proof of Lemma 2. Introduce some notation: if iT is a produc

tion, let rT be the right-hand side and itrthe left-hand side of it.

Define a new transformation U from L and T as in the proof
of Theorem 1-2. That is, U =Lx T and for v E H1T L L

define

B(itqL) = ftI(qaLrt)

Here we mean L in the sense of' an I-action on j

59

i.e., if (qT x) occurs as a variable node on rx, then
I

(jL(QTX)) ((qLQTx) Thus, B(iTcqL) CT U)

Let qq),o) - t' be a production in IT exactly when

there is a production C= (q)a) 4 r3t and t' E B(irq).

Assertion" For t E ,Oj qT Q , if T is completely

T
defined on t starting in q T then

{sI(Lt T),t) *U l {(w(qTIs 1 q t) T and (qL-,) ={)-L

(Here, s, t. and w are in 70.) By the assertion, U is the com

posite LoT when restricted to these inputs for which T is completely

defined. The theorem thus follows from the inductive statement.

Proof of the assertion. (2). Proceed by induction. If

t = X E ZO both sides are equal, by definition, to the union of the

B(nrq L) for which q occurs in LT. Suppose the result for

t0 ...,tn-l let t = a(to,...tnl). Assume that

(aw)((j2,t) =* w (qLp) * s).and 2

Then there is a E HT and

N(T ,t) r[(qOtiO00 .(qik-i)tiki)

(these are the indices occurring in left-to-right order in the

derived tree). Now (q30 tio) %T W...,(qiklik-) =T Wk-l If we1

apply qL to rT(wO,... ;Wkl)) -we can derive as an intermediate step

4o

1700 p-1(qO q Pl)]

where (q :TIC) j t . That as, t' E B(;qL) looks like

tt[L q 0..((L T

where the y's are certain of the x.Is occurring in rit. If now

C
we take this t' E B(T q) and substitute the correct t m mmfor

T
we know that T is completely defined in state qm on tim. Now

. and ; 4 L s . The inductive hypothesis

mam m ain m)m

applies, and so

[(;j)'t]= s, 0< m < p-i.
qm m am

But,

Vp= t [) ol... _

is derivable from t in the system U. We conclude that since

then, in fact, v =t s. The inclusion thus holds in the inductive case.

Now for the other inclusion (S) we need to use complete de

finablity and linearity at essential points. Again proceed by in

duction; the basis holds, so let t = c(t0 ...;tn 1). Suppose T is

I

41

T
completely defined on t starting an qT and

((qLIqT)t) u s, s E o.

T *
We must show that there is a w such that (q ,t) T w and

Apply one step in the derivation of s in the system U from

t. We obtain

where t' comes from the right-hand side rT of some it E 11 so

that (qLric) J t, and q occurs in itr.Notice that T is com-
L

T
pletely defined on t00 starting in q 01 because the pair

/T0 T
qj occurs in rn and T is c.d. on t starting in q . Nov

let

(T~t) = r (joti .. kltiklI

Number the index positions 0,1,...,k-1. Similarly in

- ! - OP-11t'[(kqj0L ;q3q T)It0 ... ap I I]It ,(q qjP 1) t number the indices

0,1l...,p-1. Linearity of L guarantees that there is a subset A of

(0,...,k-l) and a bijection f: (0,...)p-1) -* A such that if

occurs at the mth place in t', then (qt

occurs at the f(m)t h place in rnt. Although this is an inductive

lemma in itself, its proof should be clear because as far as variables

42

go, L can only permute them or drop them entirely. (Thus p < k.)

We will use f to construct the tree w needed to establish the

result.

Let

L T N S "'' qT l

Thus s = t'[so ... sp-l]. Since T is c.d. on t starting in

T 0
qjm the hypothesis applies, giving for each m a tree wE r

such that

(T t ,fL *
(j m T W m and (qO J m

T
Now in r{(T ,x s...,(4 ,x 1 substitute w for
L\-i0) \k-I Ik-llJ m
q3-

(T N(T N

2' IXf j. At the other positions, say (q, pxwe know

"NM) f1(m)'

S

that there is a tree w so that (qT ,t , i}.
;) This follows,

£T

T
because T is c.d. on t starting in q. Substitute ilz for the

/T N 0.

positions kT X) We obtain a tree w E ,'O and clearly

T

(q At) & w. Also,i ,q

because u = ric~w ,...,w I and (qLjriC) t<; the definition of

insures that (4 Tw because this pair occurs at

f'(m), 'f(mi)T

the ruth place in t'. Thus during the L-derivation from W it

must occur at the mth place as well. We see that

L L
(q;w)
 L
otI(qjo,,,o),..,qjp_-Is_Il

But

* I:L TNL

C(ql),t)*t (qjo o),to...,((. j ,tj , and

,,T msL* s, O<m<p-1.
qn ,qm M hnMUm

Hence, when ((q ,q),t) r s = t then we have

T L(qt)Jr w and (q w) = s. This completes the proof of the lemma

and the theorem. Q.E.D.

We are in a position to investigate further properties of

surface dendrolanguages. Notice that Theorem 11-3 is effective.

Corollary. The class of surface dendrolanguages is effectively

closed under intersection vith recognizable sets.

Proof. Let 5Z be recognizable, and let T[5i'] be a surface

set. By the proof of Theorem 2 there is a linear transformation

which is a partial identity on 6. Hence t E L[T[']] iff

t E T[EO] n a.

Corollary. Surface dendrolanguages form a subclass of the

recursive dendrolanguages over E.

L

44

froof. Given T[6] and t E J', the set (t) is recognizable.

Now

t E R T[6QJ n (t)3 5

By the previous corollary T[a] n (t) is a surface set U[9]. But

U[g] = 9 'iff

domain (u)nS = .

Domain (U)n a is recognizable, so the result follows.

To prove further properties, we need to define the set of paths

through a tree. Given a ranked alphabet S, let 2' be the alphabet

(Srt), where

r'(U) =I f E 0

fr = otherwise.

Defanition. Given t E 0 P(t), the set of paths through t,

is the subset of 7, defined inductively by

n-l

P(O(tO ... tni)) = U {F(w)jw E P(ti)-

i=C

If PR C-, then

P[R] =U P(t).
tE9

45

P is clea3y definable as a linear nondeterministic transforma

tion. Hence:

Corollary. If 9 is a surface set, then so is P[g] (ef

fectively).

A similar result holds for recognizable sets:

Proposition. If p is recognizable, then so is P[G].

Proof. Let a = (Asa,.AB.) recognize g. Let B C A be the

set

{q E AI(r E 0)(ltlla = q

B is effectively calculable from (using the solvability of the

emptiness problem for the sets accepted by automata
aq which have

final states A= (q) but are otherwise the same as a. Let x E JZ1.

Construct an automaton (over Z') M9 = (2Qp,F) such that

(*) q E ItxI6 iff (St)(11t11(= q and x G P(t)).

To do this, let p. = L(a) for X E Z. If a ESn, define Po as

follows. Choose i < n-1. Define

0

fq)(= (qo '"%.''".n-9 E Q, qa E B)

I.L 04Q) U W Q)
i<n-i C

One verifies that (') holds with thus pL. If we let

F = QC A, Q f §)), then the lemma follows by (*). Q.E.D.

46

A ranked alphabet is monadz.c if Z= for n > 1. We now

prove

Theorem 4. If T[9] is contained in T0, Z monadic, then

T[2] as (effectively) recognizable.

Proof. We may certainly assume that T[91 is the range of a

transformation T whose productions have right-hand sides which are

monadic. T is thus linear, and wll choose certain paths through

each tree in R as important input. We may define for q E Q T and

any t, the set P(Tq)(t) of paths chosen by T starting in state

q.

If t = X, then P(T,q)(t) contains X exactly when there is

a production (q,%) 4 w in fT1

If t = (t0 '...tnl), then P(Tq)(t) contains w iff

w a(w'), and there is a production (q,a) -* u(rx) in 11
T

such

that w' E P(Tr)(t.). We assert that for each q,

a0{P(T, q)(t)lIt E 7§ = Hq

is a recognizable subset of 1 .

We will not give-the full proof, but an automaton Q can be

easily costructed such that

IjwjI~t= (rj(1t EAJ)(w E N(T~r)(t))).

Taking AF = (Qjq E Q), we find that (recognizes the asserted set

H of paths. Now let R be the given recognizable set. Then
q

47

H n P[R] is a recognizable subset (effectively) of 0 T itself

defines a nondeterministic finite state mapping of strings in this set.

Such maps preserve recognizable sets, and so

T[R] r T[Hq P[91]

is recognizable. Q.E.D.

Corollary. The infiniteness problem for the class of surface

sets is effectively solvable.

Proof. If 9 is a surface set, P[9] is infinite if and only

if g is. But P[S] is a recognizable set of strings effectively

obtainable from 9. The infiniteness problem for such sets is

decidable. Q.E.D.

Corollary. The class of surface sets is not closed under inter

section.

Proof. Let = 0 U FI U 72 E2 (p), SEl1 =a,'r], S0 = .

Define ai) C(x),c ai+ 1 (x) = c(iW(x)). Pat

= (p(a(),,i((&(X)))j0Ij > 1)

2 = p(&(%);Tj(c(X)))Ia > 1.

9, and S2 can both be obtained as surface sets (proof omitted); but

F(81f' g2) = fp(o5(x)) 1 U (P(oj(T5(%))))

is not recognizable. Q.E.D.

Now we give an example of an undecidable problem.

48

Corollary. There is no decision procedure for determining

whether the intersection of two surface sets is empty or not. (Sur

face sets here mean over arbitrary finite ranked alphabet.)

Proof. Let S0 = NX), El = (ab), Z2 = (a). We can

naturally interpret an element of O. as a string in z, and

conversely. Let (mO,... aM) and (%O,...,m1) be two sequences of

words from Sl" The Post correspondence problem for these sequences

is to determine whether there is a sequence of integers io... ik

such that

0 k 0 3k

(There is no algorithm to solve the Post problem-for arbitrary pairs

of sequences ((O...,cM)(O,...tm)) of words over Z'

.0 1 1k

Let L la ba ... jiE 0ba
,Let

3.1
w = a b...ba and define D(T) a It is easy to construct

S0 k

cp as a finite-state mapping of strings. Similarly, let

Y(z)=- Since 0 and y are finite-state functions, the

0 lk

sets S = (f(w,cD(w))jwE L) and 3' = (a(w,'(w))Jw E L) are surface

sets. But S n s' = 0 iff Rw E L with 0(w) = TUw). Thus,

a P 3' = 0 iff there is a solution for the given correspondence

problem. Q.E.D.

Other problems are shown unsolvable in [14]; for example,

equality of surface sets and whether a suiface set is recognizable.

49

3. Translations and target languages.

Let (R,,T) be a transformational system. The translation de

fined by (6%T) is the set

f(y(s),y(t)j(st) E T, s E 9).

(Recall T = (s~t)js *t).)

By Theorem 1 the domain of a]DFS translation is a context-free

language. We again wish to consider the ranges of such translations,

because of their importance for transformational grammars. Define a

target language as the range of a translation. An immediate question

a grammarian asks is: "Are target languages recursive sets" For

NDFS target languages, the answer is yes, and the proof is elegant.

Lemma 1. The emptiness problem for the class of NDFS target

languages is effectively solvable.

Proof. let L = y[T[]]. L = 5 iff T[9] 95. Whether

T[9] = 0 is solvable. Q.E.D.

Lemma 2. Let K be an ordinary regular subset of EO Then

0'

y-1-[K] is (effectively) a recognizable subset of 90

Proof. let (QSO8,a.,F) recognize K. For w E Z' let0

8w(q) = 5(q,w). Remark: 8XY= 8 for all x,y 0

Now define a S-automaton at by setting

A = ([P: Q no) I

a= IXfor X-E E (is not the empty string);

50

C ". -1) = %-i. .

By our first remark, for all t E J4, q E Q

IltlI5(q) = 8,(q), where w = y(t).

Hence, if A0 = fPjcp(qo) E F), then a accepts y- [K]. Q.E.D.

Theorem 5. The class of target languages is closed (ef

fectively) under intersection with regular sets.

Proof. Let L = y[T[2]] and let K be regular. Then;

K n L = y[T[,] n f-[K]]. But by the corollary to Theorem 3,

T[E] n y-I [K] is a surface set (effectively). The result follows.

Corollary. Target languages are recursive.

Proof. Let L be a target language and w E S. Then w E L

0

iff 0 IwIL = $; apply Theorem 5 and Lemma 1. Q.E.D.

Notice that Lemma 2 provides an easy proof of the fact that

context-free languages are closed under intersection with regular sets.

(Use the technique of Theorem 5.)

Finally, as a special result; we demonstrate that the infinite

ness problem for the class of target languages is solvable.

We say a tree is a fan if no nodes of rank 1 occur in it. We

can always prune the nodes of rank 1 from a tree without changing its

yield. Formally:

fan(%) = X X E Z0

fan p(t) = t, p E 1

fan c(to...t) a(fan(to);o... fan(tn)), n> 0.

51

A tree is a fan if fan(t) = t. Also, y(fan(t)) = y(t), and

fan is a linear FST. If & is a surface set then so is fan[g];

and y[fan[S]] =y[].

Theorem 6. The infiniteness problem for the class of target

languages is solvable.

Proof. Let L = y[8]. Then L = y[fan[S]]. L is infinite if

and only if fan[S] is infinite, as an easy counting argument shous.

Q.E.D.

4. A simple extension of the nondeterministic model.

When carrying out a transformational derivation one checks

trees to see whether or not transformations apply. For example, a

transformation which changes sentences to the passive voice applies

only to structures of the form "noun phrase--verb--noun phrase".

Our transformations, as defined, do not have this checking

ability, because only one node at a time is read and transformed. In

the example just described; howeverj we are required to check the level

of nodes NP-V-NP belw the top node S of the input tree. In other

examples, a structural condition may have to be satisfied which could

occur at any level in the input tree.

To remedy (partially) this defect in the basic model we may

modify our productions. We give them a look-ahead capacity--the local

output tree (right-hand side) will depend on the state, the symbol

being read and trafisformed, and a specified number of look-ahead

symbols, arranged in a tree form.

The productions will have the form

52

where s E ZX, u E xX), c E S A production will apply to

G(to,...,tn-1) if each s occurs at the top of tie [This can be

formalized as a definition.] The result of application uill be the

tree in r(Q x ..) obtained by substituting (q',t) for each pair

(q',x) occurring in u.

An FS transformation with templates is a transformation with

productions like the above. The extended definition provides a

limited look-ahead capability for nondeterministic mappings. One can

prove, however, that if (9T) is a transformational system, where T

has templates, then T[9] is an ordinary surface set. The idea is to

use the transitions of T in a nondeterministic mapping U which

guesses that the template expected by T will actually appear. If this

is the case: U performs the action of T; if not, U becomes un

defined. Details are omitted.

5. Creative grammars on trees.

We turn now to a new type of production which will grow input

trees to be processed as well as read and destroy input nodes. One

system using these productions provides an extension of context-free

grammars to trees. Brainerd [6] has considered regular tree grammars;

his definition can be subsumed here.

Consider an FS index-erasing production; for example

C, J)6-Xj) - r,

/,XI)

53

Here, the next states occur as labels on the variables at the bottom

of the output tree. Another possibility, however, would be to allow

productions like

Xi
Figure 2

or even

Figure 3

In the first of these cases, we would operate next on the tree

starting in state r, and on the tree P(x2) starting in state

q. In the second case, the next operation would be performed on

a(p(xl),x 2) starting in state q.

This idea lets us define a new operation on trees (which may be

nondeterministic). If wve select a starting configuration it may be

possible to grow index trees nondeterministically ad infinitum before

the application of index-erasing productions takes place. We will

call the new productions index-creating. in the first example of an

index-creating production, no new input was actually created, the

state q remained stationary. This, of course, is the analogue of a

pointer remaining stationary in an input string. The creation of a

new index in the second example is not the analogue of moving backward

54

in the input string but, of using the input str:ng both as a push-down

memory and as an input.

Example. Consider the monadic productions

0 LI I
(j,) b

Figure 4

and the starting configuration (qS()). This system produces a

dendrolanguage Ihich can be identified with L(G), where G is a

CFG with productions

S -4 aSS I ab.

Notice, however, that derivations in the tree case correspond to left

to-right derivations in the grammar. As is well-Imown, there is no

loss of generality in doing left-to-right derivations exclusively in a

gramar. We shall not prove it, but this property is also true for a

class of tree grammars.

One more word--we shall not use creative productions to define

mappings. We shall fix one configuration to start from, and will con

sider sequences cf producbions which from this configu ation eventually

produce state-free trees or terminal trees. Thus we are really doing

grammars.

55

Consider the whole tree t which may occur labeled by a state

q on the right-hand side of some creative production. The pair (q~t)

may itself by considered an index. If t = x E X: then we get an

index in the old sense. The new index set is, however, Q X (X);

instead of Q x X. Formally:

Definition. A pair (q5$(xo,... Xn_l)) 4 u is an index

creating production if u E Y (Q X.7 (X)).

Definition. For R a given set of creative productions, and

t EE X J), the set of trees t' directly generated by t is

defined inductively.

(i) if t E ZO, then ft'ft t') = ,

(ii) if t = (q,;), there are 2 cases depending on the form

of E:

(a) if t E. , then there is some pDroduction (qt) - u

in ic; and t' = u;

(b) if t a(tZ0 ... ,tn-l)9 then there is a production

(q,c) - u in ir and t' is obtained from u by substituting t

for x , j = 0,.. .n-1, whenever x occurs in an index of u.

(iii) If t = c(to0 ...tn9l); then there is an i < n such

that t generates t! and t' = a(to...,t{,.. l

At this point we had better say something about substitution as

mentioned in part (b) of the last definition. We shall give a formal

definition and use it later to prove a result. This definition can

also be used t6 justify formally what we said in previous sections.

56

Definition. Let u E Y x E(XmY)) and let (so;...,Sm-l)

be a fixed sequence of terms. The function Subxo." .U), or

S(S fu) is defined by induction on u*

(i) if u=X,= Q%ju =x;

(ii)if u = (q,%), s(xilu -- (q,%);

if u (qqxj, SGj'u) (qs

if u = (qjp(to...,tm)), then

s. s
SG U=x"Psi to0). A tm))) o

(iii) if u = a(Uo,...,uk1), then

sG' , ...
<iu)= hi s ui.j).

Definition. A top-dowm creative tree grammar over F is a

0

tuple (ZQs r) where, Q is a set of states, D is a set of index

creating productions over Q and E. and S is a finite subset of

x -) (the starting configurations).

As before, let be the reflexLve, transitive closure of the

direct generation relation.

57

Definition, For G a tree grammar, the dendrolanguage

generated by G is the set

;PG {t E 4 I(Ss E S)s t}

Example. Let = (C), Z2 = (B], = (H],Z4 S1 Z0 = (a]. Let

(q0,q 2) and let the initial configuration be (k0)H(a)). We

have the productions

(q,H(x)) - (q 0 ,H(H(x)))IC((q,x),(q 2,x),(qx),a)

(q1,n(x)) 4 C((q,x),(q2,x),(q 2,x),a)

(q2,H(x)) -4 B(a,(q2,x))

(qa) 4 a (i = 0,1;2).

Applying the first production, we derive a "string" (qo,O(a)), n > i.

We then apply index-erasing productions which at each level add 2n+l

2

a's to the yield. The yield of the resulting tree is an

The index-erasing productions in this grammar correspond to the

application of the recursion equation

f(n+l) = f(n) + 2n+l.

0

If P E I [X] is a polynomial, and if k E U, then the language

[a (n)
In >_(1) where =(x) p.(x)kt can be obtained as the

i=l

yield of a creatLve dendrolanguage. A grammar for such a dendro

language would employ a state qf for each function f in a system

58

of recursion equations needed to describe (. The following theorem,

therefore, may be surprising.

Theorem 7. Every creative dendrolanguage can be generated by a

one-state creative dendrogrammar.

Proof. The problem with reducing many states to one is that

during application of index-erasing productions, index subtrees may be

duplicated an then processed in different ways. The index subtrees,

however, are obtained from the starting trees by application of

creative productions. Therefore, when a new index symbol is created,

we must take into account the possible states in which at could be

read off by an index-erasing production. The creative productions in

a grammar will therefore be modified to encode state-transitions in

their indices. If Q is the set of states in the original grammar,

the new index labels will be of the form a(q) where 6 E S, and

q E Q. The rank of a (q) will also be changed. If Q has p

states, (p > 2), then r'(a (q)) = p-r(q). For notational con

venience, we will relabel variables as follows:

x(q) = I pi+q-1

where q E Q ;[,...,p).

Thus, if H E Z has old rank 1, then H will have new

rank p, 'selection by the new grammar of x M occurring as an index

H (q)
on will correspond, in the old grammar, to selecting x. and
1

going to state j.

As illustrations, let us encode some productions. Suppose

Q = [1,2,3]. Let

59

(la(x)) -4(2,H(H(x-

be an old production. Let be the single state of the new grammar.

We rewrite it as shown in Figure 5.

H0) -0- 0 ,

Figure 5

Next, suppose

(3,H(x0)) - C((2,x0),(2,xo),(3,xo))

is another production. Its encoding would be

H(3()/) M x(2)x(P) C ' (2))X(2) .X(3)

Finally, if

(2,K(xox)) -+C((4,Xo),(3,x),2,xl))

is a production, its encoding is

*j(3)
.K(2)((1) (2) (3)(:1)x(2). (3)4C (Xc1 ;(. .,(2)

We can now proceed with the proof. We must encode productions, whose

right-hand sides are elements of (X 7-(Xn)). Let

A = (q) LT E Z q E Q). We first encode members of T%(X) into
En

6o

= as follows. Let q E Q l,...,p]. DefineJ.A(Xp.n); this is done

maps eq: S'() - 7(Xn) by simultaneous induction:

= X(q)
eq(X)

Now we can encode any u E Y5Q x 75Xn)). Define

e q(P~eOI.to,...,t_) 1) -- ;((to); ,Ie(sn_ 1)) ps0 s
E(x) =

Here, is the unique neir state; and so 3: 71(Q SX .7(xn

$S(f.) X A(X)). one proves with a tedious but straightforvard

argument by induction on u, using our previous definition of sub

stitution, thar for fixed so,...Ism E T,(X +l) and any

u E 7 1Q5-Z(X,+)) that

ef
 ,e1(s)

(*
S~ (fau))=

where I < i < p; 0 < j < m. Also (by induction) e is a one-to-one

function; and if t E j40 then (t) = t.
'S

Now let G' = (z U A*)A['%So]111?) where G = (s,QSOfl). If

icE H1, say (qo, .. 'Xn-i) -) u) let E(n) be the production

http:q(P~eOI.to

61

Set H' ((T)Iit E E).

Let t t' mean that t directly generates t' by applica

tion of the production n. Assertion: For any t E7r(Q X) if

then there is a t' E T.(Q X 7) such that

t = t' and w- = (t').

The theorem follows from this assertion because is 1-1 and if

t E J 0 then 5(t') = t. Thus, derivations correspond exactly in
t E,

both grammars.

The proof of the assertion is by induction on t) and has three

main cases:

(i) If t = X E Z the assertion is vacuously true.

(ii) If t = (qs) where s E 7 0 , then two subcases arise.

(a) s = X E s0 . Then 6(t) = (.,eq()). Now 5(1c)

must be ((.,eq(?)) _ (u)), where u E .50. Taking t' = u satisfies

the assertion.

(b) s = p(so,...,sm). Then,

E(t) = (-,p(q) (s5))), 0< j m, < I <p.

Thus,

62

and so

l= ... xm) -

Now by hypothesis of the assertion

e(s.)

6(t) w=u

and we know

t =I t'=SjI)

By (*) above, E(t') = w. so the assertion holds in case (il).

(iii) t = a(t0 ,...tnl) and the assertion holds for

tO ,...*2tn- 1 No-i.

E(t) = U(E(t0)I...M
 (tn -1)).

Since E(t) =,(,) w. there must be i < n so that E(ti) =_(.) w.,

and w = c((to,...,wi,...,(tn)). By inductive hypothesis,

t. = t' and E(t!) = w. for some t'. Thus,

U =I t' = (t0,...;ta; ... tn-l)

so that w = E(t'). Q.E.D.

We shall not repeat the definition here, but an 01 (outside-in)

macro granmar F-scher [9] is exactly a one-state creative dendrogrammar

63

which produces only the yield of the terminal tree. 01 grammars

produce exactly the indexed languages of Aho [1]. Thus (the

yield of) a creative dendrolanguage is always an indexed language,

and conversely (modulo the empty string).

In the spirit of Brainerd [6], one can define cont ext-free tree

grammars in a natural way. Let E = N U T N n T = 0 be a ranked

alphabet. Consider productions of the form a(xo,... xn1l) 4 U,

where 5 E N and u E E(Xn). Suppose s = a(SO...Jsnjl) is a

t E I.subtree of a tree

Let s' = S(' u. Replace the subtree s by s'. The result

ing tree t' is defined to be the tree obtained from t by the given

production.

Definition. Let

G = (zSot)

where Z is as above, SO is a finite subset of J. and H is a

finite set of productions. G is a context-free dendrogrammar.

Definition. The dendrolanguage generated by G is
C

(fw ET (0o S)(S o =* w).

A derivation in a CF dendrogramar is said to be top-down if

whenever a symbol a is rewritten using a production a is not a

descendant of any node in N. This is the analogae of a left-to

right derivation in an ordinary context-free grammar. It is not hard

64

to show (in fact it follws from work of Fischer [91) that if G is

any CF dendxograrmar (CFDG), then any tree in Z(G) may be obtained

by a top-down derivation. Since the one-state creative dendrogrammars

also work from the top down, it is clear that the context-free dendro

languages are exactly the creative dendrolanguages. Taking yields, we

have the equation

recognizable dendrolanguages context-free dendrolanguages

context-free languages indexed languages

One may also use creative productions to define transformations

on trees, thus obtaining creative surface sets and target languages.

Decision problems for these sets remain solvable; in particular,

recursive target languages are still obtained. Creative transforma

tions, however, do not seem to reflect properties of transformations

proposed for natural languages, so we have not studied them here.

REFERENCES

[11 	 AHO, A. V. "Indexed grammars--an extension of the context-free

grammars," JACM 15 (i968), 647-671.

[2] 	 AHO, A. V. and ULIIAN, J. D. "Automaton analogs of syntax
directed translation schemata)" Proc. 9th IEEE Ann. Symp. on

Switching and Automata Theory, October, 196E.

[3] 	 AHO, A. V. and ULI4AN J. D. "Translations on a context-free

grammar," Proc. ACM Symp. on Theory of Computing May, 1969.

[4] 	 ARBIB, M. A. and GIVE'ON, Y. "Algebra automata I. Parallel

programming as a prolegomena to the categorical approach," Inf.

Control 12 (1958)j 331-345.

[51 	 BRAINERD, W. S. "The minimalization of tree automata;" Inf.

control 14 (1959), 217-231.

[6] 	 BKAINERD, W. S. "Tree generating regular systems," Inf. Control
12 (1965), 31-545.

[7] 	 CHOMSKY, N. "Aspects of the theory of syntax," M.I.T. Press,

Cambridge, Mass., 1965.

[81 	 DONER, J. E. "Tree acceptors and some of their applications,"

System Development Corp., Scientific Report No. 8 (1967).

[91 	 FISCHER, M. J. "Grammars with macro-lke pioductions," Proc.

9th IEEE Symp. on Switching and Automata Theory, October, 1i58.

[101 	 IRONS, E. T. "A syntax-directed compiler for ALGOL 60," CACM 4
(1961), 51-55.

[111 	 LEWIS, P. M. and STEARNS, R. E. "Syntax-directed transduction,"

JACM 15 (1958), 465-488.

[12] 	 NEZEI, J. and WRIGkT, J. B. "Algebraic automata and context-free

sets," Inf. Contrdl 11 (1967), 3-29.

[13] 	 RABIN M. 0. "Mathematical Theory of Automata," Mathematical

Aspects of Computer Science (Proc. Symposia Appl. Math., XIX,

173-175) American Mathematical Society, Providence, R. I.; 1957.

[14] 	 ROUNDS, W. C. "Trees, transducers, and transformations," Ph.D.
dissertation, Stanford University, August, 1968.

[151 	 THATCHER J. W. "Characterizing derivation trees of context-free
grammars through a generalization of finite automata theory," J.
Comp. System Sci. 1 (1967), 317-322.

66

[16] 	 THATCHER, J. W. "Transfcrmations and translations from the point

of view of generalized finite automata theory," Proc. ACM Con
ference on Theory of Oomputang, May, c69.

[17] 	 THATCHER, J. W. and ITRIGET, J. B. "Generalized finite automata

theory with application to a decision problem of second order

logic7" Math. Systems Theory 2 (19S8), 57-81.

ernr/241,ov/69

